General Relativity and Quantum Cosmology
[Submitted on 28 Nov 2018 (v1), last revised 18 Feb 2020 (this version, v2)]
Title:Einstein manifolds with torsion and nonmetricity
View PDFAbstract:Manifolds endowed with torsion and nonmetricity are interesting both from the physical and the mathematical points of view. In this paper, we generalize some results presented in the literature. We study Einstein manifolds (i.e., manifolds whose symmetrized Ricci tensor is proportional to the metric) in d dimensions with nonvanishing torsion that has both a trace and a traceless part, and analyze invariance under extended conformal transformations of the corresponding field equations. Then, we compare our results to the case of Einstein manifolds with zero torsion and nonvanishing nonmetricity, where the latter is given in terms of the Weyl vector (Einstein-Weyl spaces). We find that the trace part of the torsion can alternatively be interpreted as the trace part of the nonmetricity. The analysis is subsequently extended to Einstein spaces with both torsion and nonmetricity, where we also discuss the general setting in which the nonmetricity tensor has both a trace and a traceless part. Moreover, we consider and investigate actions involving scalar curvatures obtained from torsionful or nonmetric connections, analyzing their relations with other gravitational theories that appeared previously in the literature. In particular, we show that the Einstein-Cartan action and the scale invariant gravity (also known as conformal gravity) action describe the same dynamics. Then, we consider the Einstein-Hilbert action coupled to a three-form field strength and show that its equations of motion imply that the manifold is Einstein with totally antisymmetric torsion.
Submission history
From: Lucrezia Ravera [view email][v1] Wed, 28 Nov 2018 09:24:05 UTC (22 KB)
[v2] Tue, 18 Feb 2020 13:59:08 UTC (26 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.