Condensed Matter > Strongly Correlated Electrons
[Submitted on 29 Nov 2018 (v1), last revised 18 Feb 2019 (this version, v2)]
Title:Lower Bound on the Hartree-Fock Energy of the Electron Gas
View PDFAbstract:The Hartree-Fock ground state of the Homogeneous Electron Gas is never translation invariant, even at high densities. As proved by Overhauser, the (paramagnetic) free Fermi Gas is always unstable under the formation of spin or charge density waves. We give here the first explicit bound on the energy gain due to the breaking of translational symmetry. Our bound is exponentially small at high density, which justifies posteriori the use of the non-interacting Fermi Gas as a reference state in the large-density expansion of the correlation energy of the Homogeneous Electron Gas. We are also able to discuss the positive temperature phase diagram and prove that the Overhauser instability only occurs at temperatures which are exponentially small at high density. Our work sheds a new light on the Hartree-Fock phase diagram of the Homogeneous Electron Gas.
Submission history
From: Mathieu Lewin [view email][v1] Thu, 29 Nov 2018 20:01:48 UTC (13 KB)
[v2] Mon, 18 Feb 2019 13:27:54 UTC (31 KB)
Current browse context:
cond-mat.str-el
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.