Quantum Physics
[Submitted on 30 Nov 2018 (v1), last revised 27 Jun 2022 (this version, v4)]
Title:Constant gap between conventional strategies and those based on C*-dynamics for self-embezzlement
View PDFAbstract:We consider a bipartite transformation that we call self-embezzlement and use it to prove a constant gap between the capabilities of two models of quantum information: the conventional model, where bipartite systems are represented by tensor products of Hilbert spaces; and a natural model of quantum information processing for abstract states on C*-algebras, where joint systems are represented by tensor products of C*-algebras. We call this the C*-circuit model and show that it is a special case of the commuting-operator model (in that it can be translated into such a model). For the conventional model, we show that there exists a constant $\epsilon_0 > 0$ such that self-embezzlement cannot be achieved with precision parameter less than $\epsilon_0$ (i.e., the fidelity cannot be greater than $1 - \epsilon_0$); whereas, in the C*-circuit model -- as well as in a commuting-operator model -- the precision can be $0$ (i.e., fidelity~$1$).
Submission history
From: Vern Paulsen [view email][v1] Fri, 30 Nov 2018 01:44:10 UTC (26 KB)
[v2] Wed, 10 Apr 2019 13:02:43 UTC (27 KB)
[v3] Wed, 25 May 2022 21:06:18 UTC (41 KB)
[v4] Mon, 27 Jun 2022 15:24:28 UTC (40 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.