Condensed Matter > Statistical Mechanics
[Submitted on 30 Dec 2018 (v1), last revised 27 Aug 2019 (this version, v3)]
Title:Robust random search with scale-free stochastic resetting
View PDFAbstract:A new model of search based on stochastic resetting is introduced, wherein rate of resets depends explicitly on time elapsed since the beginning of the process. It is shown that rate inversely proportional to time leads to paradoxical diffusion which mixes self-similarity and linear growth of the mean square displacement with non-locality and non-Gaussian propagator. It is argued that such resetting protocol offers a general and efficient search-boosting method that does not need to be optimized with respect to the scale of the underlying search problem (e.g., distance to the goal) and is not very sensitive to other search parameters. Both subdiffusive and superdiffusive regimes of the mean squared displacement scaling are demonstrated with more general rate functions.
Submission history
From: Łukasz Kuśmierz [view email][v1] Sun, 30 Dec 2018 17:55:40 UTC (148 KB)
[v2] Tue, 16 Apr 2019 04:53:23 UTC (208 KB)
[v3] Tue, 27 Aug 2019 03:14:46 UTC (213 KB)
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.