Quantitative Finance > Computational Finance
[Submitted on 12 Feb 2019]
Title:Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing
View PDFAbstract:Treating high dimensionality is one of the main challenges in the development of computational methods for solving problems arising in finance, where tasks such as pricing, calibration, and risk assessment need to be performed accurately and in real-time. Among the growing literature addressing this problem, Gass et al. [14] propose a complexity reduction technique for parametric option pricing based on Chebyshev interpolation. As the number of parameters increases, however, this method is affected by the curse of dimensionality. In this article, we extend this approach to treat high-dimensional problems: Additionally exploiting low-rank structures allows us to consider parameter spaces of high dimensions. The core of our method is to express the tensorized interpolation in tensor train (TT) format and to develop an efficient way, based on tensor completion, to approximate the interpolation coefficients. We apply the new method to two model problems: American option pricing in the Heston model and European basket option pricing in the multi-dimensional Black-Scholes model. In these examples we treat parameter spaces of dimensions up to 25. The numerical results confirm the low-rank structure of these problems and the effectiveness of our method compared to advanced techniques.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.