Quantitative Finance > Mathematical Finance
[Submitted on 2 Mar 2019]
Title:Non-Parametric Robust Model Risk Measurement with Path-Dependent Loss Functions
View PDFAbstract:Understanding and measuring model risk is important to financial practitioners. However, there lacks a non-parametric approach to model risk quantification in a dynamic setting and with path-dependent losses. We propose a complete theory generalizing the relative-entropic approach by Glasserman and Xu to the dynamic case under any $f$-divergence. It provides an unified treatment for measuring both the worst-case risk and the $f$-divergence budget that originate from the model uncertainty of an underlying state process.
Current browse context:
q-fin.MF
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.