Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 20 Jun 2019]
Title:Exchange rules for diradical π-conjugated hydrocarbons
View PDFAbstract:A variety of planar {\pi}-conjugated hydrocarbons such as heptauthrene, Clar's goblet and, recently synthesized, triangulene have two electrons occupying two degenerate molecular orbitals. The resulting spin of the interacting ground state is often correctly anticipated as S = 1, extending the application of Hund's rules to these systems, but this is not correct in some instances. Here we provide a set of rules to correctly predict the existence of zero mode states, as well as the spin multiplicity of both the ground state and the low-lying excited states, together with their open- or closed-shell nature. This is accomplished using a combination of analytical arguments and configuration interaction calculations with a Hubbard model, both backed by quantum chemistry methods with a larger Gaussian basis set. Our results go beyond the well established Lieb's theorem and Ovchinnikov's rule, as we address the multiplicity and the open-/closed-shell nature of both ground and excited states.
Submission history
From: Ricardo Ortiz Cano [view email][v1] Thu, 20 Jun 2019 10:37:30 UTC (4,227 KB)
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.