Condensed Matter > Quantum Gases
[Submitted on 20 Jun 2019 (v1), last revised 15 Apr 2020 (this version, v2)]
Title:Effective theory for ultracold strongly interacting fermionic atoms in two dimensions
View PDFAbstract:We propose a minimal theoretical model for the description of a two-dimensional (2D) strongly interacting Fermi gas confined transversely in a tight harmonic potential, and present accurate predictions for its equation of state and breathing mode frequency. We show that the minimal model Hamiltonian needs at least two independent interaction parameters, the 2D scattering length and effective range of interactions, in order to quantitatively explain recent experimental measurements at nonzero filling factor $N/N_{2D}$, where $N$ is the total number of atoms and $N_{2D}$ is the threshold number to reach the 2D limit. We therefore resolve in a satisfactory way the puzzling experimental observations of reduced equations of state and reduced quantum anomaly in breathing mode frequency, due to small yet non-negligible $N/N_{2D}$. We argue that a conclusive demonstration of the much-anticipated quantum anomaly is possible at a filling factor of a few percent. Our establishment of the minimal model for 2D ultracold atoms could be crucial to understanding the fermionic Berezinskii-Kosterlitz-Thouless transition in the strongly correlated regime.
Submission history
From: Hui Hu [view email][v1] Thu, 20 Jun 2019 12:36:25 UTC (145 KB)
[v2] Wed, 15 Apr 2020 01:41:20 UTC (162 KB)
Current browse context:
cond-mat.quant-gas
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.