Condensed Matter > Superconductivity
[Submitted on 27 Jul 2019]
Title:Quantum Crystal Structure in the 250 K Superconducting Lanthanum Hydride
View PDFAbstract:The discovery of superconductivity at 200 K in the hydrogen sulfide system at large pressures [1] was a clear demonstration that hydrogen-rich materials can be high-temperature superconductors. The recent synthesis of LaH$_{10}$ with a superconducting critical temperature (T$_{\text{c}}$) of 250 K [2,3] places these materials at the verge of reaching the long-dreamed room-temperature superconductivity. Electrical and x-ray diffraction measurements determined a weakly pressure-dependent T$_{\text{c}}$ for LaH$_{10}$ between 137 and 218 gigapascals in a structure with a face-centered cubic (fcc) arrangement of La atoms [3]. Here we show that quantum atomic fluctuations stabilize in all this pressure range a high-symmetry Fm-3m crystal structure consistent with experiments, which has a colossal electron-phonon coupling of $\lambda\sim3.5$. Even if ab initio classical calculations neglecting quantum atomic vibrations predict this structure to distort below 230 GPa yielding a complex energy landscape with many local minima, the inclusion of quantum effects simplifies the energy landscape evidencing the Fm-3m as the true ground state. The agreement between the calculated and experimental T$_{\text{c}}$ values further supports this phase as responsible for the 250 K superconductivity. The relevance of quantum fluctuations in the energy landscape found here questions many of the crystal structure predictions made for hydrides within a classical approach that at the moment guide the experimental quest for room-temperature superconductivity [4,5,6]. Furthermore, quantum effects reveal crucial to sustain solids with extraordinary electron-phonon coupling that may otherwise be unstable [7].
Submission history
From: José A. Flores-Livas [view email][v1] Sat, 27 Jul 2019 14:01:04 UTC (5,200 KB)
Current browse context:
cond-mat.supr-con
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.