Condensed Matter > Soft Condensed Matter
[Submitted on 1 Oct 2019 (v1), last revised 31 Mar 2021 (this version, v2)]
Title:Role of Gaussian curvature on local equilibrium and dynamics of smectic-isotropic interfaces
View PDFAbstract:Recent research on interfacial instabilities of smectic films has shown unexpected morphologies that are not fully explained by classical local equilibrium thermodynamics. Annealing focal conic domains can lead to conical pyramids, changing the sign of the Gaussian curvature, and exposing smectic layers at the interface. In order to explore the role of the Gaussian curvature on the stability and evolution of the film-vapor interface, we introduce a phase field model of a smectic-isotropic system as a first step in the study. Through asymptotic analysis of the model, we generalize the classical condition of local equilibrium, the Gibbs-Thomson equation, to include contributions from surface bending and torsion, and a dependence on the layer orientation at the interface. A full numerical solution of the phase field model is then used to study the evolution of focal conic structures in smectic domains in contact with the isotropic phase via local evaporation and condensation of smectic layers. As in experiments, numerical solutions show that pyramidal structures emerge near the center of the focal conic owing to evaporation of adjacent smectic planes and to their orientation relative to the interface. Near the center of the focal conic domain, a correct description of the motion of the interface requires the additional curvature terms obtained in the asymptotic analysis, thus clarifying the limitations in modeling motion of hyperbolic surfaces solely driven by mean curvature.
Submission history
From: Eduardo Vitral [view email][v1] Tue, 1 Oct 2019 15:40:18 UTC (4,467 KB)
[v2] Wed, 31 Mar 2021 00:32:54 UTC (4,831 KB)
Current browse context:
cond-mat.soft
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.