Quantitative Biology > Neurons and Cognition
[Submitted on 27 Jan 2020]
Title:Metastable attractors explain the variable timing of stable behavioral action sequences
View PDFAbstract:Natural animal behavior displays rich lexical and temporal dynamics, even in a stable environment. This implies that behavioral variability arises from sources within the brain, but the origin and mechanics of these processes remain largely unknown. Here, we focus on the observation that the timing of self-initiated actions shows large variability even when they are executed in stable, well-learned sequences. Could this mix of reliability and stochasticity arise within the same circuit? We trained rats to perform a stereotyped sequence of self-initiated actions and recorded neural ensemble activity in secondary motor cortex (M2), which is known to reflect trial-by-trial action timing fluctuations. Using hidden Markov models we established a robust and accurate dictionary between ensemble activity patterns and actions. We then showed that metastable attractors, representing activity patterns with the requisite combination of reliable sequential structure and high transition timing variability, could be produced by reciprocally coupling a high dimensional recurrent network and a low dimensional feedforward one. Transitions between attractors were generated by correlated variability arising from the feedback loop between the two networks. This mechanism predicted a specific structure of low-dimensional noise correlations that were empirically verified in M2 ensemble dynamics. This work suggests a robust network motif as a novel mechanism to support critical aspects of animal behavior and establishes a framework for investigating its circuit origins via correlated variability.
Submission history
From: Stefano Recanatesi [view email][v1] Mon, 27 Jan 2020 06:29:55 UTC (3,519 KB)
Current browse context:
q-bio.NC
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.