Quantitative Biology > Quantitative Methods
[Submitted on 5 Feb 2020 (v1), last revised 28 Jul 2020 (this version, v2)]
Title:FPGA Acceleration of Sequence Alignment: A Survey
View PDFAbstract:Genomics is changing our understanding of humans, evolution, diseases, and medicines to name but a few. As sequencing technology is developed collecting DNA sequences takes less time thereby generating more genetic data every day. Today the rate of generating genetic data is outpacing the rate of computation power growth. Current sequencing machines can sequence 50 humans genome per day; however, aligning the read sequences against a reference genome and assembling the genome will take 1300 CPU hours. The main step in constructing the genome is aligning the reads against a reference genome. Numerous accelerators have been proposed to accelerate the DNA alignment process. Providing massive parallelism, FPGA-based accelerators have shown great performance in accelerating DNA alignment algorithms. Additionally, FPGA-based accelerators provide better energy efficiency than general-purpose processors. In this survey, we introduce three main DNA alignment algorithms and FPGA-based implementation of these algorithms to accelerate the DNA alignment. We also, compare these three alignment categories and show how accelerators are developing during the time.
Submission history
From: Sahand Salamat [view email][v1] Wed, 5 Feb 2020 00:33:22 UTC (906 KB)
[v2] Tue, 28 Jul 2020 02:45:14 UTC (906 KB)
Current browse context:
q-bio.QM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.