Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Feb 2020 (v1), last revised 17 Sep 2024 (this version, v2)]
Title:On the Similarity of Deep Learning Representations Across Didactic and Adversarial Examples
View PDF HTML (experimental)Abstract:The increasing use of deep neural networks (DNNs) has motivated a parallel endeavor: the design of adversaries that profit from successful misclassifications. However, not all adversarial examples are crafted for malicious purposes. For example, real world systems often contain physical, temporal, and sampling variability across instrumentation. Adversarial examples in the wild may inadvertently prove deleterious for accurate predictive modeling. Conversely, naturally occurring covariance of image features may serve didactic purposes. Here, we studied the stability of deep learning representations for neuroimaging classification across didactic and adversarial conditions characteristic of MRI acquisition variability. We show that representational similarity and performance vary according to the frequency of adversarial examples in the input space.
Submission history
From: Pk Douglas [view email][v1] Mon, 17 Feb 2020 07:49:20 UTC (5,579 KB)
[v2] Tue, 17 Sep 2024 02:01:42 UTC (10,557 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.