Computer Science > Machine Learning
[Submitted on 24 Mar 2020]
Title:Incorporating User's Preference into Attributed Graph Clustering
View PDFAbstract:Graph clustering has been studied extensively on both plain graphs and attributed graphs. However, all these methods need to partition the whole graph to find cluster structures. Sometimes, based on domain knowledge, people may have information about a specific target region in the graph and only want to find a single cluster concentrated on this local region. Such a task is called local clustering. In contrast to global clustering, local clustering aims to find only one cluster that is concentrating on the given seed vertex (and also on the designated attributes for attributed graphs). Currently, very few methods can deal with this kind of task. To this end, we propose two quality measures for a local cluster: Graph Unimodality (GU) and Attribute Unimodality (AU). The former measures the homogeneity of the graph structure while the latter measures the homogeneity of the subspace that is composed of the designated attributes. We call their linear combination as Compactness. Further, we propose LOCLU to optimize the Compactness score. The local cluster detected by LOCLU concentrates on the region of interest, provides efficient information flow in the graph and exhibits a unimodal data distribution in the subspace of the designated attributes.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.