Computer Science > Machine Learning
[Submitted on 25 Mar 2020]
Title:Generalized Canonical Correlation Analysis: A Subspace Intersection Approach
View PDFAbstract:Generalized Canonical Correlation Analysis (GCCA) is an important tool that finds numerous applications in data mining, machine learning, and artificial intelligence. It aims at finding `common' random variables that are strongly correlated across multiple feature representations (views) of the same set of entities. CCA and to a lesser extent GCCA have been studied from the statistical and algorithmic points of view, but not as much from the standpoint of linear algebra. This paper offers a fresh algebraic perspective of GCCA based on a (bi-)linear generative model that naturally captures its essence. It is shown that from a linear algebra point of view, GCCA is tantamount to subspace intersection; and conditions under which the common subspace of the different views is identifiable are provided. A novel GCCA algorithm is proposed based on subspace intersection, which scales up to handle large GCCA tasks. Synthetic as well as real data experiments are provided to showcase the effectiveness of the proposed approach.
Submission history
From: Charilaos Kanatsoulis [view email][v1] Wed, 25 Mar 2020 04:04:25 UTC (469 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.