Computer Science > Cryptography and Security
[Submitted on 22 Apr 2020 (v1), last revised 27 May 2020 (this version, v2)]
Title:Live Trojan Attacks on Deep Neural Networks
View PDFAbstract:Like all software systems, the execution of deep learning models is dictated in part by logic represented as data in memory. For decades, attackers have exploited traditional software programs by manipulating this data. We propose a live attack on deep learning systems that patches model parameters in memory to achieve predefined malicious behavior on a certain set of inputs. By minimizing the size and number of these patches, the attacker can reduce the amount of network communication and memory overwrites, with minimal risk of system malfunctions or other detectable side effects. We demonstrate the feasibility of this attack by computing efficient patches on multiple deep learning models. We show that the desired trojan behavior can be induced with a few small patches and with limited access to training data. We describe the details of how this attack is carried out on real systems and provide sample code for patching TensorFlow model parameters in Windows and in Linux. Lastly, we present a technique for effectively manipulating entropy on perturbed inputs to bypass STRIP, a state-of-the-art run-time trojan detection technique.
Submission history
From: Robby Costales [view email][v1] Wed, 22 Apr 2020 22:08:29 UTC (384 KB)
[v2] Wed, 27 May 2020 21:21:46 UTC (559 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.