Statistics > Computation
[Submitted on 15 May 2020 (v1), last revised 20 Apr 2021 (this version, v2)]
Title:Bayesian model inversion using stochastic spectral embedding
View PDFAbstract:In this paper we propose a new sampling-free approach to solve Bayesian model inversion problems that is an extension of the previously proposed spectral likelihood expansions (SLE) method. Our approach, called stochastic spectral likelihood embedding (SSLE), uses the recently presented stochastic spectral embedding (SSE) method for local spectral expansion refinement to approximate the likelihood function at the core of Bayesian inversion problems. We show that, similar to SLE, this approach results in analytical expressions for key statistics of the Bayesian posterior distribution, such as evidence, posterior moments and posterior marginals, by direct post-processing of the expansion coefficients. Because SSLE and SSE rely on the direct approximation of the likelihood function, they are in a way independent of the computational/mathematical complexity of the forward model. We further enhance the efficiency of SSLE by introducing a likelihood specific adaptive sample enrichment scheme. To showcase the performance of the proposed SSLE, we solve three problems that exhibit different kinds of complexity in the likelihood function: multimodality, high posterior concentration and high nominal dimensionality. We demonstrate how SSLE significantly improves on SLE, and present it as a promising alternative to existing inversion frameworks.
Submission history
From: Bruno Sudret [view email][v1] Fri, 15 May 2020 07:06:55 UTC (3,884 KB)
[v2] Tue, 20 Apr 2021 14:22:44 UTC (2,527 KB)
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.