Quantitative Biology > Other Quantitative Biology
[Submitted on 31 May 2020]
Title:Ontology-based systematic classification and analysis of coronaviruses, hosts, and host-coronavirus interactions towards deep understanding of COVID-19
View PDFAbstract:Given the existing COVID-19 pandemic worldwide, it is critical to systematically study the interactions between hosts and coronaviruses including SARS-Cov, MERS-Cov, and SARS-CoV-2 (cause of COVID-19). We first created four host-pathogen interaction (HPI)-Outcome postulates, and generated a HPI-Outcome model as the basis for understanding host-coronavirus interactions (HCI) and their relations with the disease outcomes. We hypothesized that ontology can be used as an integrative platform to classify and analyze HCI and disease outcomes. Accordingly, we annotated and categorized different coronaviruses, hosts, and phenotypes using ontologies and identified their relations. Various COVID-19 phenotypes are hypothesized to be caused by the backend HCI mechanisms. To further identify the causal HCI-outcome relations, we collected 35 experimentally-verified HCI protein-protein interactions (PPIs), and applied literature mining to identify additional host PPIs in response to coronavirus infections. The results were formulated in a logical ontology representation for integrative HCI-outcome understanding. Using known PPIs as baits, we also developed and applied a domain-inferred prediction method to predict new PPIs and identified their pathological targets on multiple organs. Overall, our proposed ontology-based integrative framework combined with computational predictions can be used to support fundamental understanding of the intricate interactions between human patients and coronaviruses (including SARS-CoV-2) and their association with various disease outcomes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.