Computer Science > Neural and Evolutionary Computing
[Submitted on 5 Jun 2020 (v1), last revised 22 Jun 2021 (this version, v3)]
Title:Brain-inspired global-local learning incorporated with neuromorphic computing
View PDFAbstract:Two main routes of learning methods exist at present including error-driven global learning and neuroscience-oriented local learning. Integrating them into one network may provide complementary learning capabilities for versatile learning scenarios. At the same time, neuromorphic computing holds great promise, but still needs plenty of useful algorithms and algorithm-hardware co-designs for exploiting the advantages. Here, we report a neuromorphic hybrid learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity. It can meta-learn local plasticity and receive top-down supervision information for multiscale synergic learning. We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors. It achieves significantly higher performance than single-learning methods, and shows promise in empowering neuromorphic applications revolution. We further implemented the hybrid model in the Tianjic neuromorphic platform by exploiting algorithm-hardware co-designs and proved that the model can fully utilize neuromorphic many-core architecture to develop hybrid computation paradigm.
Submission history
From: Yujie Wu [view email][v1] Fri, 5 Jun 2020 04:24:19 UTC (1,395 KB)
[v2] Thu, 3 Sep 2020 12:01:40 UTC (1,410 KB)
[v3] Tue, 22 Jun 2021 01:15:53 UTC (2,148 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.