Physics > Optics
[Submitted on 8 Jun 2020 (v1), last revised 11 Mar 2021 (this version, v2)]
Title:6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source
View PDFAbstract:Optical hyperspectral imaging based on absorption and scattering of photons at the visible and adjacent frequencies denotes one of the most informative and inclusive characterization methods in material research. Unfortunately, restricted by the diffraction limit of light, it is unable to resolve the nanoscale inhomogeneity in light-matter interactions, which is diagnostic of the local modulation in material structure and properties. Moreover, many nanomaterials have highly anisotropic optical properties that are outstandingly appealing yet hard to characterize through conventional optical methods. Therefore, there has been a pressing demand in the diverse fields including electronics, photonics, physics, and materials science to extend the optical hyperspectral imaging into the nanometer length scale. In this work, we report a super-resolution hyperspectral imaging technique that simultaneously measures optical absorption and scattering spectra with the illumination from a tungsten-halogen lamp. We demonstrated sub-5 nm spatial resolution in both visible and near-infrared wavelengths (415 to 980 nm) for the hyperspectral imaging of strained single-walled carbon nanotubes (SWNT) and reconstructed true-color images to reveal the longitudinal and transverse optical transition-induced light absorption and scattering in the SWNTs. This is the first time transverse optical absorption in SWNTs were clearly observed experimentally. The new technique provides rich near-field spectroscopic information that had made it possible to analyze the spatial modulation of band-structure along a single SWNT induced through strain engineering.
Submission history
From: Xuezhi Ma [view email][v1] Mon, 8 Jun 2020 19:39:47 UTC (4,888 KB)
[v2] Thu, 11 Mar 2021 16:52:33 UTC (7,281 KB)
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.