Statistics > Applications
[Submitted on 3 Jul 2020 (v1), last revised 22 Aug 2020 (this version, v2)]
Title:Statistical hypothesis testing versus machine-learning binary classification: distinctions and guidelines
View PDFAbstract:Making binary decisions is a common data analytical task in scientific research and industrial applications. In data sciences, there are two related but distinct strategies: hypothesis testing and binary classification. In practice, how to choose between these two strategies can be unclear and rather confusing. Here we summarize key distinctions between these two strategies in three aspects and list five practical guidelines for data analysts to choose the appropriate strategy for specific analysis needs. We demonstrate the use of those guidelines in a cancer driver gene prediction example.
Submission history
From: Jingyi Jessica Li [view email][v1] Fri, 3 Jul 2020 20:56:54 UTC (1,046 KB)
[v2] Sat, 22 Aug 2020 04:06:10 UTC (419 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.