Mathematics > Statistics Theory
[Submitted on 16 Jul 2020 (v1), last revised 20 Jul 2020 (this version, v2)]
Title:Open-end nonparametric sequential change-point detection based on the retrospective CUSUM statistic
View PDFAbstract:The aim of online monitoring is to issue an alarm as soon as there is significant evidence in the collected observations to suggest that the underlying data generating mechanism has changed. This work is concerned with open-end, nonparametric procedures that can be interpreted as statistical tests. The proposed monitoring schemes consist of computing the so-called retrospective CUSUM statistic (or minor variations thereof) after the arrival of each new observation. After proposing suitable threshold functions for the chosen detectors, the asymptotic validity of the procedures is investigated in the special case of monitoring for changes in the mean, both under the null hypothesis of stationarity and relevant alternatives. To carry out the sequential tests in practice, an approach based on an asymptotic regression model is used to estimate high quantiles of relevant limiting distributions. Monte Carlo experiments demonstrate the good finite-sample behavior of the proposed monitoring schemes and suggest that they are superior to existing competitors as long as changes do not occur at the very beginning of the monitoring. Extensions to statistics exhibiting an asymptotic mean-like behavior are briefly discussed. Finally, the application of the derived sequential change-point detection tests is succinctly illustrated on temperature anomaly data.
Submission history
From: Ivan Kojadinovic [view email][v1] Thu, 16 Jul 2020 14:44:43 UTC (453 KB)
[v2] Mon, 20 Jul 2020 11:43:35 UTC (453 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.