Quantitative Biology > Neurons and Cognition
[Submitted on 29 Jul 2020]
Title:Mesoscopic architecture enhances communication across the Macaque connectome revealing structure-function correspondence in the brain
View PDFAbstract:Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to negotiate the complexity arising from interactions between its large number of components. Focusing on a wiring diagram that spans the cortex, basal ganglia and thalamus of the Macaque brain, we provide a mesoscopic-level description of the topological architecture of one of the most well-studied mammalian connectomes. The robust modules we identify each comprise densely inter-connected cortical and sub-cortical areas that play complementary roles in executing specific cognitive functions. We find that physical proximity between areas is insufficient to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out the effect of distance constraints on the connectivity. We observe that the distribution profile of brain areas, classified in terms of their intra- and inter-modular connectivity, is conserved across the principal cortical subdivisions, as well as, sub-cortical structures. In particular provincial hubs, which have significantly higher number of connections with members of their module, but relatively less well-connected to other modules, are the only class that exhibits homophily, i.e., a discernible preference to connect to each other. By considering a process of diffusive propagation we demonstrate that this architecture, instead of localizing the activity, facilitates rapid communication across the connectome. By supplementing the topological information about the Macaque connectome with physical locations, volumes and functions of the constituent areas and analyzing this augmented dataset, we reveal a counter-intuitive role played by the modular architecture of the brain in promoting global interaction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.