Quantitative Biology > Populations and Evolution
[Submitted on 6 Aug 2020]
Title:Visualization and machine learning for forecasting of COVID-19 in Senegal
View PDFAbstract:In this article, we give visualization and different machine learning technics for two weeks and 40 days ahead forecast based on public data. On July 15, 2020, Senegal reopened its airspace doors, while the number of confirmed cases is still increasing. The population no longer respects hygiene measures, social distancing as at the beginning of the contamination. Negligence or tiredness to always wear the masks? We make forecasting on the inflection point and possible ending time.
Submission history
From: Babacar Mbaye Ndiaye [view email][v1] Thu, 6 Aug 2020 15:50:30 UTC (5,005 KB)
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.