Computer Science > Machine Learning
[Submitted on 18 Aug 2020]
Title:Shared MF: A privacy-preserving recommendation system
View PDFAbstract:Matrix factorization is one of the most commonly used technologies in recommendation system. With the promotion of recommendation system in e-commerce shopping, online video and other aspects, distributed recommendation system has been widely promoted, and the privacy problem of multi-source data becomes more and more important. Based on Federated learning technology, this paper proposes a shared matrix factorization scheme called SharedMF. Firstly, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data. Experimental results show that compared with the existing homomorphic encryption methods, our method can have faster execution speed without privacy disclosure, and can better adapt to recommendation scenarios with large amount of data.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.