Computer Science > Machine Learning
[Submitted on 19 Aug 2020]
Title:Demand Forecasting using Long Short-Term Memory Neural Networks
View PDFAbstract:In this paper we investigate to what extent long short-term memory neural networks (LSTMs) are suitable for demand forecasting in the e-grocery retail sector. For this purpose, univariate as well as multivariate LSTM-based models were developed and tested for 100 fast-moving consumer goods in the context of a master's thesis. On average, the developed models showed better results for food products than the comparative models from both statistical and machine learning families. Solely in the area of beverages random forest and linear regression achieved slightly better results. This outcome suggests that LSTMs can be used for demand forecasting at product level. The performance of the models presented here goes beyond the current state of research, as can be seen from the evaluations based on a data set that unfortunately has not been publicly available to date.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.