Quantitative Biology > Populations and Evolution
[Submitted on 1 Oct 2020]
Title:Shielding the vulnerable in an epidemic: a numerical approach
View PDFAbstract:The death toll for Covid-19 may be reduced by dividing the population into two classes, the vulnerable and the fit, with different lockdown regimes. Instead of one reproduction number there now are four parameters. These make it possible to quantify the effect of the social distancing measures. There is a simple stochastic model for epidemics in a two type population. Apart from the size of the population of the vulnerable and the fit, and the initial number of infected in the two classes, only the four reproduction parameters are needed to run the two type Reed-Frost model. The program is simple and fast. On a pc it takes less than five minutes to do a hundred thousand simulations of the epidemic for a population of the size of the US. Epidemics are non-linear processes. Results may be counterintuitive. The average number of vulnerable persons infected by an infectious fit person is a crucial parameter of the epidemic in the two type population. Intuitively this parameter should be small. However simulations show that even if this parameter is small the death toll may be higher than without shielding. Under certain conditions increasing the value of the parameter may reduce the death toll. The article addresses these blind spots in our intuition.
Current browse context:
q-bio.PE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.