Quantitative Biology > Biomolecules
[Submitted on 10 Oct 2020]
Title:A clustering-based biased Monte Carlo approach to protein titration curve prediction
View PDFAbstract:In this work, we developed an efficient approach to compute ensemble averages in systems with pairwise-additive energetic interactions between the entities. Methods involving full enumeration of the configuration space result in exponential complexity. Sampling methods such as Markov Chain Monte Carlo (MCMC) algorithms have been proposed to tackle the exponential complexity of these problems; however, in certain scenarios where significant energetic coupling exists between the entities, the efficiency of the such algorithms can be diminished. We used a strategy to improve the efficiency of MCMC by taking advantage of the cluster structure in the interaction energy matrix to bias the sampling. We pursued two different schemes for the biased MCMC runs and show that they are valid MCMC schemes. We used both synthesized and real-world systems to show the improved performance of our biased MCMC methods when compared to the regular MCMC method. In particular, we applied these algorithms to the problem of estimating protonation ensemble averages and titration curves of residues in a protein.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.