Condensed Matter > Materials Science
[Submitted on 13 Nov 2020 (v1), last revised 25 Apr 2021 (this version, v2)]
Title:Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45-50 K
View PDFAbstract:Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect that might be used for high precision metrology and edge channel spintronics. In conjunction with superconductors, they could host chiral Majorana zero modes which are among the contenders for the realization of topological qubits. Recently, it was discovered that the stable 2+ state of Mn enables the formation of intrinsic magnetic topological insulators with A1B2C4 stoichiometry. However, the first representative, MnBi2Te4, is antiferromagnetic with 25 K Néel temperature and strongly n-doped. Here, we show that p-type MnSb2Te4, previously considered topologically trivial, is a ferromagnetic topological insulator in the case of a few percent of Mn excess. It shows (i) a ferromagnetic hysteresis with record high Curie temperature of 45-50 K, (ii) out-of-plane magnetic anisotropy and (iii) a two-dimensional Dirac cone with the Dirac point close to the Fermi level which features (iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy and (v) a magnetically induced band gap that closes at the Curie temperature as demonstrated by scanning tunneling spectroscopy. Moreover, it displays (vi) a critical exponent of magnetization beta~1, indicating the vicinity of a quantum critical point. Ab initio band structure calculations reveal that the slight excess of Mn that substitutionally replaces Sb atoms provides the ferromagnetic interlayer coupling. Remaining deviations from the ferromagnetic order, likely related to this substitution, open the inverted bulk band gap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulators.
Submission history
From: Oliver Rader [view email][v1] Fri, 13 Nov 2020 18:46:23 UTC (4,455 KB)
[v2] Sun, 25 Apr 2021 11:33:31 UTC (10,971 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.