Mathematics > Combinatorics
[Submitted on 4 Dec 2020 (v1), last revised 9 Feb 2022 (this version, v2)]
Title:Complexity of fixed point counting problems in Boolean Networks
View PDFAbstract:A Boolean network (BN) with $n$ components is a discrete dynamical system described by the successive iterations of a function $f:\{0,1\}^n \to \{0,1\}^n$. This model finds applications in biology, where fixed points play a central role. For example, in genetic regulations, they correspond to cell phenotypes. In this context, experiments reveal the existence of positive or negative influences among components: component $i$ has a positive (resp. negative) influence on component $j$ meaning that $j$ tends to mimic (resp. negate) $i$. The digraph of influences is called signed interaction digraph (SID), and one SID may correspond to a large number of BNs (which is, in average, doubly exponential according to $n$). The present work opens a new perspective on the well-established study of fixed points in BNs. When biologists discover the SID of a BN they do not know, they may ask: given that SID, can it correspond to a BN having at least/at most $k$ fixed points? Depending on the input, we prove that these problems are in $\textrm{P}$ or complete for $\textrm{NP}$, $\textrm{NP}^{\textrm{NP}}$, $\textrm{NP}^{\textrm{#P}}$ or $\textrm{NEXPTIME}$. In particular, we prove that it is $\textrm{NP}$-complete (resp. $\textrm{NEXPTIME}$-complete) to decide if a given SID can correspond to a BN having at least two fixed points (resp. no fixed point).
Submission history
From: Adrien Richard [view email][v1] Fri, 4 Dec 2020 10:45:51 UTC (39 KB)
[v2] Wed, 9 Feb 2022 07:06:33 UTC (45 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.