Statistics > Methodology
[Submitted on 15 Dec 2020]
Title:Maximum $\log_q$ Likelihood Estimation for Parameters of Weibull Distribution and Properties: Monte Carlo Simulation
View PDFAbstract:The maximum ${\log}_q$ likelihood estimation method is a generalization of the known maximum $\log$ likelihood method to overcome the problem for modeling non-identical observations (inliers and outliers). The parameter $q$ is a tuning constant to manage the modeling capability. Weibull is a flexible and popular distribution for problems in engineering. In this study, this method is used to estimate the parameters of Weibull distribution when non-identical observations exist. Since the main idea is based on modeling capability of objective function $\rho(x;\boldsymbol{\theta})=\log_q\big[f(x;\boldsymbol{\theta})\big]$, we observe that the finiteness of score functions cannot play a role in the robust estimation for inliers. The properties of Weibull distribution are examined. In the numerical experiment, the parameters of Weibull distribution are estimated by $\log_q$ and its special form, $\log$, likelihood methods if the different designs of contamination into underlying Weibull distribution are applied. The optimization is performed via genetic algorithm. The modeling competence of $\rho(x;\boldsymbol{\theta})$ and insensitiveness to non-identical observations are observed by Monte Carlo simulation. The value of $q$ can be chosen by use of the mean squared error in simulation and the $p$-value of Kolmogorov-Smirnov test statistic used for evaluation of fitting competence. Thus, we can overcome the problem about determining of the value of $q$ for real data sets.
Submission history
From: Mehmet Niyazi Cankaya mehmetn [view email][v1] Tue, 15 Dec 2020 14:01:05 UTC (2,588 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.