Statistics > Methodology
[Submitted on 15 Dec 2020]
Title:Computation-free Nonparametric testing for Local and Global Spatial Autocorrelation with application to the Canadian Electorate
View PDFAbstract:Measures of local and global spatial association are key tools for exploratory spatial data analysis. Many such measures exist including Moran's $I$, Geary's $C$, and the Getis-Ord $G$ and $G^*$ statistics. A parametric approach to testing for significance relies on strong assumptions, which are often not met by real world data. Alternatively, the most popular nonparametric approach, the permutation test, imposes a large computational burden especially for massive graphical networks. Hence, we propose a computation-free approach to nonparametric permutation testing for local and global measures of spatial autocorrelation stemming from generalizations of the Khintchine inequality from functional analysis and the theory of $L^p$ spaces. Our methodology is demonstrated on the results of the 2019 federal Canadian election in the province of Alberta. We recorded the percentage of the vote gained by the conservative candidate in each riding. This data is not normal, and the sample size is fixed at $n=34$ ridings making the parametric approach invalid. In contrast, running a classic permutation test for every riding, for multiple test statistics, with various neighbourhood structures, and multiple testing correction would require the simulation of millions of permutations. We are able to achieve similar statistical power on this dataset to the permutation test without the need for tedious simulation. We also consider data simulated across the entire electoral map of Canada.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.