Statistics > Methodology
[Submitted on 20 Dec 2020 (v1), last revised 8 Sep 2022 (this version, v3)]
Title:Trace-class Gaussian priors for Bayesian learning of neural networks with MCMC
View PDFAbstract:This paper introduces a new neural network based prior for real valued functions on $\mathbb R^d$ which, by construction, is more easily and cheaply scaled up in the domain dimension $d$ compared to the usual Karhunen-Loève function space prior. The new prior is a Gaussian neural network prior, where each weight and bias has an independent Gaussian prior, but with the key difference that the variances decrease in the width of the network in such a way that the resulting function is \emph{almost surely} well defined in the limit of an infinite width network. We show that in a Bayesian treatment of inferring unknown functions, the induced posterior over functions is amenable to Monte Carlo sampling using Hilbert space Markov chain Monte Carlo (MCMC) methods. This type of MCMC is popular, e.g. in the Bayesian Inverse Problems literature, because it is stable under \emph{mesh refinement}, i.e. the acceptance probability does not shrink to $0$ as more parameters of the function's prior are introduced, even \emph{ad infinitum}. In numerical examples we demonstrate these stated competitive advantages over other function space priors. We also implement examples in Bayesian Reinforcement Learning to automate tasks from data and demonstrate, for the first time, stability of MCMC to mesh refinement for these type of problems.
Submission history
From: Torben Sell [view email][v1] Sun, 20 Dec 2020 14:52:57 UTC (6,314 KB)
[v2] Sun, 31 Oct 2021 11:28:09 UTC (7,381 KB)
[v3] Thu, 8 Sep 2022 11:13:15 UTC (10,247 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.