Mathematics > Statistics Theory
[Submitted on 21 Dec 2020]
Title:Aspects of optimality of plans orthogonal through other factors
View PDFAbstract:The concept of orthogonality through the block factor (OTB), defined in Bagchi (2010), is extended here to orthogonality through a set (say S) of other factors. We discuss the impact of such an orthogonality on the precision of the estimates as well as on the inference procedure. Concentrating on the case when $S$ is of size two, we construct a series of plans in each of which every pair of other factors is orthogonal through a given pair of factors.
Next we concentrate on plans through the block factors (POTB). We construct POTBs for symmetrical experiments with two and three-level factors. The plans for two factors are E-optimal, while those for three-level factors are universally optimal.
Finally, we construct POTBs for $s^t(s+1)$ experiments, where $s \equiv 3 \pmod 4$ is a prime power. The plan is universally optimal.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.