Statistics > Computation
[Submitted on 21 Dec 2020 (v1), last revised 23 Aug 2021 (this version, v2)]
Title:Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation
View PDFAbstract:Rare event probability estimation is an important topic in reliability analysis. Stochastic methods, such as importance sampling, have been developed to estimate such probabilities but they often fail in high dimension. In this paper, we propose a new cross-entropy-based importance sampling algorithm to improve rare event probability estimation in high dimension. We focus on the cross-entropy method with Gaussian auxiliary distributions and we suggest to update the Gaussian covariance matrix only in a one-dimensional subspace. For that purpose, the main idea is to consider the projection in the one-dimensional subspace spanned by the sample mean vector, which gives an influential direction for the variance estimation. This approach does not require any additional simulation budget compared to the basic cross-entropy algorithm and we show on different numerical test cases that it greatly improves its performance in high dimension.
Submission history
From: Maxime ElMasri [view email][v1] Mon, 21 Dec 2020 10:45:49 UTC (1,087 KB)
[v2] Mon, 23 Aug 2021 08:46:49 UTC (483 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.