Statistics > Machine Learning
[Submitted on 21 Dec 2020]
Title:Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box Optimization Framework
View PDFAbstract:In this work, we focus on the study of stochastic zeroth-order (ZO) optimization which does not require first-order gradient information and uses only function evaluations. The problem of ZO optimization has emerged in many recent machine learning applications, where the gradient of the objective function is either unavailable or difficult to compute. In such cases, we can approximate the full gradients or stochastic gradients through function value based gradient estimates. Here, we propose a novel hybrid gradient estimator (HGE), which takes advantage of the query-efficiency of random gradient estimates as well as the variance-reduction of coordinate-wise gradient estimates. We show that with a graceful design in coordinate importance sampling, the proposed HGE-based ZO optimization method is efficient both in terms of iteration complexity as well as function query cost. We provide a thorough theoretical analysis of the convergence of our proposed method for non-convex, convex, and strongly-convex optimization. We show that the convergence rate that we derive generalizes the results for some prominent existing methods in the nonconvex case, and matches the optimal result in the convex case. We also corroborate the theory with a real-world black-box attack generation application to demonstrate the empirical advantage of our method over state-of-the-art ZO optimization approaches.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.