Statistics > Methodology
[Submitted on 22 Dec 2020]
Title:MLE of Jointly Constrained Mean-Covariance of Multivariate Normal Distributions
View PDFAbstract:Estimating the unconstrained mean and covariance matrix is a popular topic in statistics. However, estimation of the parameters of $N_p(\mu,\Sigma)$ under joint constraints such as $\Sigma\mu = \mu$ has not received much attention. It can be viewed as a multivariate counterpart of the classical estimation problem in the $N(\theta,\theta^2)$ distribution. In addition to the usual inference challenges under such non-linear constraints among the parameters (curved exponential family), one has to deal with the basic requirements of symmetry and positive definiteness when estimating a covariance matrix. We derive the non-linear likelihood equations for the constrained maximum likelihood estimator of $(\mu,\Sigma)$ and solve them using iterative methods. Generally, the MLE of covariance matrices computed using iterative methods do not satisfy the constraints. We propose a novel algorithm to modify such (infeasible) estimators or any other (reasonable) estimator. The key step is to re-align the mean vector along the eigenvectors of the covariance matrix using the idea of regression. In using the Lagrangian function for constrained MLE (Aitchison et al. 1958), the Lagrange multiplier entangles with the parameters of interest and presents another computational challenge. We handle this by either iterative or explicit calculation of the Lagrange multiplier. The existence and nature of location of the constrained MLE are explored within a data-dependent convex set using recent results from random matrix theory. A simulation study illustrates our methodology and shows that the modified estimators perform better than the initial estimators from the iterative methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.