Statistics > Machine Learning
[Submitted on 22 Dec 2020 (v1), last revised 31 Dec 2020 (this version, v2)]
Title:Selective Forgetting of Deep Networks at a Finer Level than Samples
View PDFAbstract:Selective forgetting or removing information from deep neural networks (DNNs) is essential for continual learning and is challenging in controlling the DNNs. Such forgetting is crucial also in a practical sense since the deployed DNNs may be trained on the data with outliers, poisoned by attackers, or with leaked/sensitive information. In this paper, we formulate selective forgetting for classification tasks at a finer level than the samples' level. We specify the finer level based on four datasets distinguished by two conditions: whether they contain information to be forgotten and whether they are available for the forgetting procedure. Additionally, we reveal the need for such formulation with the datasets by showing concrete and practical situations. Moreover, we introduce the forgetting procedure as an optimization problem on three criteria; the forgetting, the correction, and the remembering term. Experimental results show that the proposed methods can make the model forget to use specific information for classification. Notably, in specific cases, our methods improved the model's accuracy on the datasets, which contains information to be forgotten but is unavailable in the forgetting procedure. Such data are unexpectedly found and misclassified in actual situations.
Submission history
From: Tomohiro Hayase [view email][v1] Tue, 22 Dec 2020 06:17:31 UTC (2,925 KB)
[v2] Thu, 31 Dec 2020 12:26:34 UTC (2,925 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.