Statistics > Applications
[Submitted on 25 Jan 2021]
Title:A nowcasting approach to generate timely estimates of Mexican economic activity: An application to the period of COVID-19
View PDFAbstract:In this paper, we present a new approach based on dynamic factor models (DFMs) to perform nowcasts for the percentage annual variation of the Mexican Global Economic Activity Indicator (IGAE in Spanish). The procedure consists of the following steps: i) build a timely and correlated database by using economic and financial time series and real-time variables such as social mobility and significant topics extracted by Google Trends; ii) estimate the common factors using the two-step methodology of Doz et al. (2011); iii) use the common factors in univariate time-series models for test data; and iv) according to the best results obtained in the previous step, combine the statistically equal better nowcasts (Diebold-Mariano test) to generate the current nowcasts. We obtain timely and accurate nowcasts for the IGAE, including those for the current phase of drastic drops in the economy related to COVID-19 sanitary measures. Additionally, the approach allows us to disentangle the key variables in the DFM by estimating the confidence interval for both the factor loadings and the factor estimates. This approach can be used in official statistics to obtain preliminary estimates for IGAE up to 50 days before the official results.
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.