Quantitative Biology > Genomics
[Submitted on 26 Jan 2021]
Title:essHi-C: Essential component analysis of Hi-C matrices
View PDFAbstract:Motivation: Hi-C matrices are cornerstones for qualitative and quantitative studies of genome folding, from its territorial organization to compartments and topological domains. The high dynamic range of genomic distances probed in Hi-C assays reflects in an inherent stochastic background of the interactions matrices, which inevitably convolve the features of interest with largely aspecific ones. Results: Here we introduce a discuss essHi-C, a method to isolate the specific, or essential component of Hi-C matrices from the aspecific portion of the spectrum that is compatible with random matrices. Systematic comparisons show that essHi-C improves the clarity of the interaction patterns, enhances the robustness against sequencing depth, allows the unsupervised clustering of experiments in different cell lines and recovers the cell-cycle phasing of single-cells based on Hi-C data. Thus, essHi-C provides means for isolating significant biological and physical features from Hi-C matrices.
Submission history
From: Marco Di Stefano [view email][v1] Tue, 26 Jan 2021 09:17:29 UTC (5,639 KB)
Current browse context:
q-bio.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.