Computer Science > Machine Learning
[Submitted on 29 Jan 2021 (v1), last revised 17 Oct 2021 (this version, v3)]
Title:On the capacity of deep generative networks for approximating distributions
View PDFAbstract:We study the efficacy and efficiency of deep generative networks for approximating probability distributions. We prove that neural networks can transform a low-dimensional source distribution to a distribution that is arbitrarily close to a high-dimensional target distribution, when the closeness are measured by Wasserstein distances and maximum mean discrepancy. Upper bounds of the approximation error are obtained in terms of the width and depth of neural network. Furthermore, it is shown that the approximation error in Wasserstein distance grows at most linearly on the ambient dimension and that the approximation order only depends on the intrinsic dimension of the target distribution. On the contrary, when $f$-divergences are used as metrics of distributions, the approximation property is different. We show that in order to approximate the target distribution in $f$-divergences, the dimension of the source distribution cannot be smaller than the intrinsic dimension of the target distribution.
Submission history
From: Yunfei Yang [view email][v1] Fri, 29 Jan 2021 01:45:02 UTC (55 KB)
[v2] Thu, 13 May 2021 07:42:34 UTC (145 KB)
[v3] Sun, 17 Oct 2021 03:16:09 UTC (146 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.