Statistics > Methodology
[Submitted on 29 Apr 2021 (v1), last revised 20 Oct 2022 (this version, v4)]
Title:A Randomized Missing Data Approach to Robust Filtering and Forecasting
View PDFAbstract:We put forward a simple new randomized missing data (RMD) approach to robust filtering of state-space models, motivated by the idea that the inclusion of only a small fraction of available highly precise measurements can still extract most of the attainable efficiency gains for filtering latent states, estimating model parameters, and producing out-of-sample forecasts. In our general RMD framework we develop two alternative implementations: endogenous (RMD-N) and exogenous (RMD-X) randomization of missing data. A degree of robustness to outliers and model misspecification is achieved by purposely randomizing over the utilized subset of data measurements in their original time series order, while treating the rest as if missing. The arising robustness-efficiency trade-off is controlled by varying the fraction of randomly utilized measurements. Our RMD framework thus relates to but is different from a wide range of machine learning methods trading off bias against variance. It also provides a time-series extension of bootstrap aggregation (bagging). As an empirical illustration, we show consistently attractive performance of RMD filtering and forecasting in popular state space models for extracting inflation trends known to be hindered by measurement outliers.
Submission history
From: Pawel Szerszen [view email][v1] Thu, 29 Apr 2021 21:17:32 UTC (852 KB)
[v2] Tue, 4 May 2021 15:40:19 UTC (853 KB)
[v3] Wed, 26 May 2021 21:37:29 UTC (666 KB)
[v4] Thu, 20 Oct 2022 17:23:33 UTC (76 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.