Statistics > Methodology
[Submitted on 7 May 2021 (v1), last revised 4 Jul 2024 (this version, v4)]
Title:The $s$-value: evaluating stability with respect to distributional shifts
View PDF HTML (experimental)Abstract:Common statistical measures of uncertainty such as $p$-values and confidence intervals quantify the uncertainty due to sampling, that is, the uncertainty due to not observing the full population. However, sampling is not the only source of uncertainty. In practice, distributions change between locations and across time. This makes it difficult to gather knowledge that transfers across data sets. We propose a measure of instability that quantifies the distributional instability of a statistical parameter with respect to Kullback-Leibler divergence, that is, the sensitivity of the parameter under general distributional perturbations within a Kullback-Leibler divergence ball. In addition, we quantify the instability of parameters with respect to directional or variable-specific shifts. Measuring instability with respect to directional shifts can be used to detect the type of shifts a parameter is sensitive to. We discuss how such knowledge can inform data collection for improved estimation of statistical parameters under shifted distributions. We evaluate the performance of the proposed measure on real data and show that it can elucidate the distributional instability of a parameter with respect to certain shifts and can be used to improve estimation accuracy under shifted distributions.
Submission history
From: Suyash Gupta [view email][v1] Fri, 7 May 2021 05:18:12 UTC (1,499 KB)
[v2] Tue, 6 Jul 2021 00:39:28 UTC (2,158 KB)
[v3] Sun, 13 Mar 2022 17:51:09 UTC (2,380 KB)
[v4] Thu, 4 Jul 2024 22:56:06 UTC (2,717 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.