Statistics > Computation
[Submitted on 7 May 2021 (v1), last revised 15 May 2021 (this version, v2)]
Title:SEAGLE: A Scalable Exact Algorithm for Large-Scale Set-Based GxE Tests in Biobank Data
View PDFAbstract:The explosion of biobank data offers immediate opportunities for gene-environment (GxE) interaction studies of complex diseases because of the large sample sizes and the rich collection in genetic and non-genetic information. However, the extremely large sample size also introduces new computational challenges in GxE assessment, especially for set-based GxE variance component (VC) tests, which are a widely used strategy to boost overall GxE signals and to evaluate the joint GxE effect of multiple variants from a biologically meaningful unit (e.g., gene). In this work, we focus on continuous traits and present SEAGLE, a Scalable Exact AlGorithm for Large-scale set-based GxE tests, to permit GxE VC tests for biobank-scale data. SEAGLE employs modern matrix computations to achieve the same "exact" results as the original GxE VC tests without imposing additional assumptions or relying on approximations. SEAGLE can easily accommodate sample sizes in the order of $10^5$, is implementable on standard laptops, and does not require specialized computing equipment. We demonstrate SEAGLE's performance through extensive simulations. We illustrate its utility by conducting genome-wide gene-based GxE analysis on the Taiwan Biobank data to explore the interaction of gene and physical activity status on body mass index.
Submission history
From: Jocelyn Chi [view email][v1] Fri, 7 May 2021 13:01:12 UTC (6,298 KB)
[v2] Sat, 15 May 2021 02:39:30 UTC (3,579 KB)
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.