Statistics > Methodology
[Submitted on 9 May 2021]
Title:Trustworthiness of statistical inference
View PDFAbstract:We examine the role of trustworthiness and trust in statistical inference, arguing that it is the extent of trustworthiness in inferential statistical tools which enables trust in the conclusions. Certain tools, such as the p-value and significance test, have recently come under renewed criticism, with some arguing that they damage trust in statistics. We argue the contrary, beginning from the position that the central role of these methods is to form the basis for trusted conclusions in the face of uncertainty in the data, and noting that it is the misuse and misunderstanding of these tools which damages trustworthiness and hence trust. We go on to argue that recent calls to ban these tools would tackle the symptom, not the cause, and themselves risk damaging the capability of science to advance, and feeding into public suspicion of the discipline of statistics. The consequence could be aggravated mistrust of our discipline and of science more generally. In short, the very proposals could work in quite the contrary direction from that intended. We make some alternative proposals for tackling the misuse and misunderstanding of these methods, and for how trust in our discipline might be promoted.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.