Statistics > Methodology
[Submitted on 10 May 2021]
Title:Bagging cross-validated bandwidth selection in nonparametric regression estimation with applications to large-sized samples
View PDFAbstract:Cross-validation is a well-known and widely used bandwidth selection method in nonparametric regression estimation. However, this technique has two remarkable drawbacks: (i) the large variability of the selected bandwidths, and (ii) the inability to provide results in a reasonable time for very large sample sizes. To overcome these problems, bagging cross-validation bandwidths are analyzed in this paper. This approach consists in computing the cross-validation bandwidths for a finite number of subsamples and then rescaling the averaged smoothing parameters to the original sample size. Under a random-design regression model, asymptotic expressions up to a second-order for the bias and variance of the leave-one-out cross-validation bandwidth for the Nadaraya--Watson estimator are obtained. Subsequently, the asymptotic bias and variance and the limit distribution are derived for the bagged cross-validation selector. Suitable choices of the number of subsamples and the subsample size lead to an $n^{-1/2}$ rate for the convergence in distribution of the bagging cross-validation selector, outperforming the rate $n^{-3/10}$ of leave-one-out cross-validation. Several simulations and an illustration on a real dataset related to the COVID-19 pandemic show the behavior of our proposal and its better performance, in terms of statistical efficiency and computing time, when compared to leave-one-out cross-validation.
Submission history
From: Daniel Barreiro Ures [view email][v1] Mon, 10 May 2021 06:31:37 UTC (6,276 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.