Mathematics > Statistics Theory
[Submitted on 10 May 2021 (v1), last revised 1 Dec 2023 (this version, v2)]
Title:Adaptive estimation in symmetric location model under log-concavity constraint
View PDFAbstract:We revisit the problem of estimating the center of symmetry $\theta$ of an unknown symmetric density $f$. Although stone (1975), Eden (1970), and Sacks (1975) constructed adaptive estimators of $\theta$ in this model, their estimators depend on external tuning parameters. In an effort to reduce the burden of tuning parameters, we impose an additional restriction of log-concavity on $f$. We construct truncated one-step estimators which are adaptive under the log-concavity assumption. Our simulations suggest that the untruncated version of the one step estimator, which is tuning parameter free, is also asymptotically efficient.
We also study the maximum likelihood estimator (MLE) of $\theta$ in the shape-restricted model.
Submission history
From: Nilanjana Laha [view email][v1] Mon, 10 May 2021 11:58:19 UTC (1,072 KB)
[v2] Fri, 1 Dec 2023 22:46:59 UTC (243 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.