Mathematics > Probability
[Submitted on 25 Oct 2021]
Title:On quantitative Laplace-type convergence results for some exponential probability measures, with two applications
View PDFAbstract:Laplace-type results characterize the limit of sequence of measures $(\pi_\varepsilon)_{\varepsilon >0}$ with density w.r.t the Lebesgue measure $(\mathrm{d} \pi_\varepsilon / \mathrm{d} \mathrm{Leb})(x) \propto \exp[-U(x)/\varepsilon]$ when the temperature $\varepsilon>0$ converges to $0$. If a limiting distribution $\pi_0$ exists, it concentrates on the minimizers of the potential $U$. Classical results require the invertibility of the Hessian of $U$ in order to establish such asymptotics. In this work, we study the particular case of norm-like potentials $U$ and establish quantitative bounds between $\pi_\varepsilon$ and $\pi_0$ w.r.t. the Wasserstein distance of order $1$ under an invertibility condition of a generalized Jacobian. One key element of our proof is the use of geometric measure theory tools such as the coarea formula. We apply our results to the study of maximum entropy models (microcanonical/macrocanonical distributions) and to the convergence of the iterates of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm at low temperatures for non-convex minimization.
Submission history
From: Valentin De Bortoli [view email][v1] Mon, 25 Oct 2021 13:00:25 UTC (830 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.