Computer Science > Machine Learning
[Submitted on 25 Oct 2021 (v1), last revised 24 Feb 2023 (this version, v2)]
Title:Uniformly Conservative Exploration in Reinforcement Learning
View PDFAbstract:A key challenge to deploying reinforcement learning in practice is avoiding excessive (harmful) exploration in individual episodes. We propose a natural constraint on exploration -- \textit{uniformly} outperforming a conservative policy (adaptively estimated from all data observed thus far), up to a per-episode exploration budget. We design a novel algorithm that uses a UCB reinforcement learning policy for exploration, but overrides it as needed to satisfy our exploration constraint with high probability. Importantly, to ensure unbiased exploration across the state space, our algorithm adaptively determines when to explore. We prove that our approach remains conservative while minimizing regret in the tabular setting. We experimentally validate our results on a sepsis treatment task and an HIV treatment task, demonstrating that our algorithm can learn while ensuring good performance compared to the baseline policy for every patient; the latter task also demonstrates that our approach extends to continuous state spaces via deep reinforcement learning.
Submission history
From: Wanqiao Xu [view email][v1] Mon, 25 Oct 2021 15:57:16 UTC (205 KB)
[v2] Fri, 24 Feb 2023 18:09:25 UTC (385 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.