General Relativity and Quantum Cosmology
[Submitted on 30 Jun 2022 (v1), last revised 6 Oct 2022 (this version, v2)]
Title:Revisiting diagonal tetrads: New Black Hole solutions in $f(T)$ gravity
View PDFAbstract:We study various forms of diagonal tetrads that accommodate Black Hole solutions in $f(T)$ gravity with certain symmetries. As is well-known, vacuum spherically symmetric diagonal tetrads lead to rather boring cases of constant torsion scalars. We extend this statement to other possible horizon topologies, namely, spherical, hyperbolic and planar horizons. All such cases are forced to have constant torsion scalars to satisfy the anti-symmetric part of the field equations. We give a full classification of possible vacuum static solutions of this sort. Furthermore, we discuss addition of time-dependence in all the above cases. We also show that if all the components of a diagonal tetrad depend only on one coordinate, then the anti-symmetric part of the field equations is automatically satisfied. This result applies to the flat horizon case with Cartesian coordinates. For solutions with a planar symmetry (or a flat horizon), one can naturally use Cartesian coordinates on the horizon. In this case, we show that the presence of matter is required for existence of non-trivial solutions. This is a novel and very interesting feature of these constructions. We present two new exact solutions, the first is a magnetic Black Hole which is the magnetic dual of a known electrically charged Black Hole in literature. The second is a dyonic Black Hole with electric and magnetic charges. We present some features of these Black holes, namely, extremality conditions, mass, behavior of torsion and curvature scalars near the singularity.
Submission history
From: Waleed El Hanafy [view email][v1] Thu, 30 Jun 2022 18:49:44 UTC (95 KB)
[v2] Thu, 6 Oct 2022 15:54:15 UTC (97 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.